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On physical grounds i t  was recently suggested that limiting capillary-gravity waves 
of solitary type may exist on the surface of deep water (Longuet-Higgins 1988). This 
paper describes accurate numerical calculations which support the conjecture. The 
limiting wave has a phase speed c = 0.9267 (g7)f .  It is one of a family of solitary 
waves having speeds c d 1.30 (g7 ) t .  The maximum angle of inclination a,,, of the 
free surface is a monotonically decreasing function of the speed c .  Physical arguments 
suggest that  a,,, has a positive lower bound. 

1. Introduction 
Solitary waves in shallow water have been recognised since the classical 

observations by Scott Russell (1838) and the approximate theories by Boussinesq 
(1871) and Rayleigh (1876). For reviews of modern numerical calculations of this 
type of wave see Miles (1980) and Schwartz & Fenton (1982). 

Solitary-type solutions for the envelope of a group of waves on deep water - that 
it so say solutions of the approximate nonlinear Schrodinger equation - have been 
found by Chou & Mei (1970, 1971) and others; for observations see Yuen & Lake 
(1975). 

Solitary waves can also exist on the stratified region between two fluids of different 
densities, unbounded above and below; see Benjamin (1967). They were observed 
experimentally by Davis & Acrivos (1967). 

Solitary capillary-gravity waves in water of Jinite depth have also been calculated 
by Korteweg & de Vries (1985) and by Hunter & Vanden-Broeck (1983). 

Until very recently, no such phenomenon was suspected for capillary or 
capillary-gravity waves on deep water. The well-known linear theory for capillary- 
gravity ( C 4 )  waves of small steepness (Lamb 1932) yields of course only periodic 
solutions, with finite wavelength. Wilton (1915) took into account some nonlinear 
terms and found that more than one type of periodic C-G wave with given length 
could sometimes exist. Accurate numerical calculations for C-G waves of finite 
steepness have been published by Bloor (1978), Schwartz & Vanden-Broeck (1979), 
Chen & Saffman (1979) and Hogan (1980, 1981) among others, but without any 
indication of a limiting form corresponding to waves of infinite length. Nonlinear 
G G  waves were also observed in the laboratory by Schooley (1958). 

Earlier, Crapper (1957) had found an exact expression for pure capillary periodic 
waves on deep water. His analytic solution showed clearly how, as the wave 
steepness is increased, the wave crests become more rounded and the wave troughs 
more narrow until finally a limiting form is reached in which adjacent wave crests 
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touch one another and pinch off a pocket of ‘air’ in the trough. At the same time the 
particle velocities in the wave crest become very small (in a frame moving 
horizontally with the wave speed). Hence the wave crests are almost in static 
equilibrium, the particle speed having little influence on the surface boundary 
condition. 

In a recent paper Longuet-Higgins (1988) pointed out that  by applying a similar 
physical assumption to the profiles of the more general C-G waves one could 
formulate a solvable equation for the profiles of the wave crests. The solution 
suggested that solitary waves of this type should exist. In  fact by patching the 
limiting wave crest to an appropriate expression for the wave troughs, expressions 
were obtained for both the speed and the profile of limiting C-G waves (of finite 
length) which agreed fairly well with the values obtained by the accurate calculations 
of Schwartz & Vanden-Broeck (1979), Chen & Saffman (1979) and Hogan (1980, 
1981). Furthermore, the argument suggested the existence of a solitary C 4  wave of 
limiting form, i.e. one enclosing a ‘pocket of air’. 

The purpose of the present paper is to  investigate by an accurate numerical 
method whether such a solitary wave exists or not. The mathematical problem is 
formulated below in $2, where equations are derived for the surface slope a as a 
function of the velocity potential ($+i$). In  $3  we describe a method of calculation 
by means of Fourier expansion in a transformed plane, the form of the solution being 
similar to that suggested by the physical argument in Longuet-Higgins (1988). 

The results are described in $4. It appears that a solitary wave of limiting form 
does indeed exist - its phase-speed is 0.9276 (gT);, where g denotes gravity and 7 
surface tension. Moreover i t  is one member of a whole family of solitary waves, whose 
speed c depends upon the maximum slope a of the surface profile. In  dimensionless 
units ( g  = 7 = l ) ,  we find convergent solutions for c lying in the range 0.9276 < 
c < 1.30. 

The behaviour of the velocity field at infinity in the horizontal direction is not 
exponential, as in shallow-water waves, but instead algebraic, the surface 
displacement T,I falling off like x-~, where x is horizontal distance. (An inner scale is 
exponential, however). In  this respect the C-G waves, though differing from solitary 
waves in shallow water, resemble both the ‘envelope solitons’ on the surface of deep 
water and the internal solitary waves on the interface of two fluids unbounded above 
and below. 

The question whether solitary C 4  waves can exist for arbitarily small values of 
the maximum surface slope a,,, is discussed in $5.  I n  $$6-S we consider the flow 
relative to stationary axes, and evaluate some of its integral properties. The net 
displaced mass in each wave is zero, so that no circulation a t  infinity is required to 
counteract the additional buoyancy. 

2. Formulation of the problem 
We consider a steady, irrotational wave, travelling with speed c to the left, on the 

surface of a frictionless, incompressible fluid of infinite depth, as in figure 1. Seen in 
a frame of reference travelling with speed c to the left, the wave appears as a steady 
flow, in which the velocity at infinite depth is a horizontal flow with speed c to the 
right. 

Let $ and $ denote the velocity potential and stream function, and x, y denote 
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horizontal and vertical coordinates as shown. Then the magnitude q and direction a 
of the velocity a t  any point in the flow are given by 

X 

where w = ($+i$)/c and z = x+iy. Hence if we define 

P = 1n (q/c) (2.2) 

(2.3) 
dw 
dz 

we see that 

This is an analytic function of w or of z ,  vanishing as y and $ tend to - 00. 

Consider now the boundary condition at  the free surface. It will be convenient to 
choose units of mass, length and time in which the density p,  the acceleration of 
gravity g and the surface-tension constant 7 are all unity. (In dimensional terms, the 
units of length and velocity are (7/pg)i and (7g/p)a respectively.) Then the condition 
of constant pressure a t  the free surface $ = 0 becomes simply 

a+$ = i(P-ia) = iln-. 

y + & * + ~  = constant, (2.4) 

where K denotes the curvature. If s denotes arclength measured along the surface we 
choose the sign of K to  be such that 

a 

X 

da aa 
K = - - = -  

ds q&i 

i.e. K is positive when the surface is convex upwards. Now we also have 

so that on differentiating (2.4) with respect t,o $ along the free surface we have 

FIGURE 1. Definition diagram showing coordinates for a solitary wave. The direction of wave 
propagation is to the left. 
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On substitution for q from (2.2) this becomes 

At the same time a and are conjugate functions of $, so that ,8 is the Hilbert 
transform of a (see Bloor 1978). 

We wish to find solutions to (2.8) representing solitary waves, i.e. such that (a  + ip) 
tends to zero as 1x1 or [$I tends to infinity. I n  that case q - t c  and K - + O  a t  infinity. 
Hence if we choose the origin of y so as to make y+O a t  inifinity, (2.4) becomes 
simply 

y + h 2 + K  = $C2. (2.9) 

However, because y is related to a through its derivative dy/dqi (see (2.6)) it is more 
convenient to deal with the differentiated form of the boundary condition, i.e. 
(2.8). 

For computation, it is most convenient to multiply (2.8) by ceb and to take as 
independent variable 0 = $ / c .  Then (2.8) becomes 

sin a + c2p’ e3B- (an+ a’p’) e2p = O (2.10) 

in which a prime denotes d/d0. 

3. Approach to a solution 
Consider the velocity field a t  infinity. It is clear that  the vortex model adopted 

earlier (Longuet-Higgins 1988), which gave a rough approximation to  the phase- 
speed c of limiting waves, cannot be exact. For, if the vertical component of velocity 
a t  the free surface varied as x-l a t  infinity then the vertical displacement would vary 
as lnx, which would make the potential energy infinite (the kinetic energy also). We 
must therefore suppose that the vertical velocity vanishes more rapidly than x-l. 
Hence writing 

we seek solutions in the form 
;(a+$) = F (3.1) 

F ( w )  = (w-ia)-2G(w), (3.2) 

where w = ($ + i$)/c as before and a is a positive, real constant. We assume that G(w) 
is analytic and bounded in the half-plane @ d 0, that  is Im (w) d 0. 

We now transform the half-plane Im (w) < 0 into the interior of the unit circle 
151 = 1 by writing 

(3.3) 

where b is another positive, real constant ; see figure 2. G(w) is analytic and bounded 
everywhere inside the circle 151 = 1, so we may expand G in a power series : 

where the coefficients R, are to  be determined. If these are real, the wave profile will 
be symmetric about the line x = 0. 
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FIGURE 2. Transformation from the w-plane to the [-plane by equations (3.3). 

The boundary condition (2.10) is expressed in terms of 

and 

etc. From (3.2) we have 

and 

Also from (3.3) 

and 

a = Im (F), p = -Re ( F )  

a ’ = I m ( g )  /3’=-Re(g) 

dF -2G 1 dG 
dw (w - i ~ ) ~  + (w - ia)2 dw 

- - (3.7) 

4 dG 1 d2G - -+ (3.8) - 6G - - d2F 
dw2 (w - ia)* (w - i ~ ) ~  d w  (w - ia)’ dw2. 

2ib dG dG 
dw (w-ib)2dt; 

- 

d2G -4ib dG 4b2 d2G 
dw2 ( ~ - i b ) ~  dc ( ~ - i b ) ~  d e  ’ 
-- ~ - - _ _ _ -  - 

(3.9) 

(3.10) 

dG/dc and d2G/dc being given in terms of the coefficients A, through (3.4) and its 
derivatives. 

The boundary condition (2.10) is clearly nonlinear in the coefficients A,. However, 
we may apply a collocation method. Thus we truncate the series (3.4) at a finite value 
N of n and choose Al ... AN so as to make the left-hand side of (2.10) vanish at N 
suitably spaced values of q5 in the range (0, CO).  These may be chosen so as to cover 
the range densely in the limit N +  00. Provided the resulting process converges we 
have a numerical solution. 

In  that case the coordinates (x, y) of the free surface may be calculated from 

x = 1; cos a ds = 1 e-p cos a do, 

y = l s i n a d s  = Ie-f ls inado.  

(3.11) 
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are odd and even functions, respectively, of 8, the boundary 
condition (2.10) is automatically satisfied at 6’ = 0. For the remaining collocation 
points it is convenient to take 

Since a and 

(2m- 1) 7c 

4” 8, = htan m =  1 ,2  ,..., N ,  (3.12) 

where h is a suitable constant. (When h = 6 ,  the points are evenly spaced around the 
circle 151 = 1 . )  

4. Numerical results 
It was found convenient to take a = 1.0, then 0.9 6 6 6 1 * 1 and 0.7 Q h Q 0.9. 

With these values i t  was found that the solutions, found by Newton’s method, 
converged to limits which were independent of the starting values of the coefficients 
A, within sensible limits, and also were independent of a ,  6 and h, provided that the 
phase speed c lay in the range 0.90 < c < 1.30. The surface profiles corresponding to 
values of c in this range are shown in figures 3 (a )  to 3 (f). The profile for c = 0.9276 
in figure 3 ( a )  represents the critical case when the free surface touches itself and 
encloses a ‘bubble’, as first found by Crapper (1957) for pure capillary waves. For 
values of c less than 0.9276 the computed solitary wave profiles are self-intersecting 
and so do not represent possible physical situations. 

It will be seen that all of the profiles are of the same general type as suggested by 
the physical reasoning in Longuet-Higgins (1988), that is, they have sharply curved 
troughs, then rise to a maximum, before approaching the free surface from above. 
The limiting case c = 0.9276 is very similar to the approximation shown in figure 1.5 
of Longuet-Higgins (1988). 

Details of the solutions are given in table 1 .  In  the third column of table 1 is shown 
the Bernoulli constant 

R = (y-yo) +i(q2 - C 2 )  + K (4.1) 

where yo denotes If the solution were exact we should have B = -yo. I n  the next 
column, AB denotes the maximum departure of B from its stated value over the 
whole range - 10 < 8 Q 10. The remaining columns show the values of qmax, 1 ~ ~ ~ ~ 1 ,  
a,,, and ymax, where ymax is the maximum elevation of the free surface ; also shown 
are the horizontal coordinate x, of this point and the total height H = ymax- yo. 

A plot of the functions a(8) and p(8) in the critical case c = 0.9276 is shown in 
figure 4. This shows that in spite of the large curvature in the wave trough (8  = 0), 
both a and p are quite smooth functions when plotted as functions of the velocity 
potential c8. 

Some numerical values of the coefficients A, when a = b = 1 are given in table 2. 
This shows that the sequence is dominated by the first coefficient A1. If this alone is 
retained then we have from (3.2) the approximate expressions 

which may be used in rough work. However when 0 > 0 we see that the expression for 
a is always positive, whereas in figure 4 the function a changes sign at 8 = 3.042 when 
x = 2.864. 

Figures 5 and 6 show plots of the maximum surface slope amax and curvature 
as functions of the phase speed c.  From this it appears that both amax and 
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FIGURE 3. Profiles of computed solitary waves: (a )  c = 0.9276, ( b )  c = 1.00, (c) c = 1.10, 
( d )  c = 1.20, ( e )  c = 1.25, (f) c = 1.30. 
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c 

0.9276 
0.95 
1 .oo 
1.05 
1.10 
1.15 
1.20 
1.25 

f1.30 
.........,.. 

N 
60 
60 
55 
55 
50 
35 
35 
20 

20 
I . .  , . . . 

B 

1.4863 
1.4515 
1.3675 
1.2745 
1.1717 
1.0583 
0.9336 
0.798 

0.645 
.......... 

AB 4max KO a m a x  

,0001 11.83 68.10 1.712 
,0001 10.83 56.81 1.652 
,0001 8.905 37.78 1.514 
.0001 7.345 25.17 1.371 
,0006 6.077 16.69 1.224 
,0009 5.032 10.94 1.072 
,0012 4.167 7.03 0.917 
,005 3.45 4.36 0.76 

,007 2.8 2.5 0.59 

t Derived from (4.3) ; see table 3. 

............................................. 

Yma, 

.090 
,095 
.lo7 
,118 
,129 
,138 
,145 
.15 

.14 
,.......... 

TABLE 1. Parameters for the profiles of solitary waves 

xrn H 

2.86 1.576 
2.83 1.547 
2.78 1.474 
2.74 1.393 
2.72 1.300 
2.70 1.196 
2.69 1.079 
2.69 0.95 

2.7 0.79 
.................... 

I I I 

0 1 2 3 , 4  5 
# 

FIGURE 4. The functions a(0) and p(0), giving the direction and magnitude of the velocity 
ceP+ia a t  the free surface in the limiting case c = 0.9276. 

J K ~ ~ ~ ~  decrease monotonically with c ,  but provided c d 1.30 both remain positive. At 
values of c only slightly beyond 1.30 satisfactory convergence of the coefficients A, 
and hence of the solution, became impossible to obtain by the present method. The 
question of the existence of solutions beyond this point will be discussed in 95. 

Here we mention that we carried out an alternative set of calculations starting 
with the less restrictive assumption 

F ( w )  = i(w-ia)-l G(w) (4.3) 
instead of (3.2). The function 0 was expanded in a power series 

G = B , - B , [ + B , ~ -  ... (4.4) 
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n 4 n A, n A N  

1 2.3508 16 -.0026 31 .0005 
2 0.5359 17 -.OW9 32 -.0007 
3 -0.6316 18 ,0032 33 ,0008 
4 0.3210 19 -.0045 34 -.0009 
5 -0.0336 20 ,0051 35 ,0009 

6 0.0083 21 -.0051 36 -.0009 
7 -0.0106 22 ,0048 37 .0008 

9 0.0319 24 ,0034 39 ,0006 

11 0.0344 26 .0019 41 ,0004 
12 -0.0255 27 -.0013 42 -.0003 
13 0.0185 28 ,0007 43 .0002 
14 -0.0128 29 -.0002 44 -.0001 
15 0.0074 30 -.0002 45 .WO1 

TABLE 2. Pu’umerical values of the coefficients A, in (3.4) when c = 0.9276 and a = b = 1.0 

8 -0.0058 23 -.0042 38 -.0007 

10 -0.0399 25 -.0027 40 -.0005 

2.0 

1.5 

amax 

1 .o 

0.5 

0 
0.8 1 .o 1.2 1.4 

C 

FIGURE 5. The maximum surface slope amax in solitary waves, as a function of the phase speed c .  
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C 

FIGURE 6. The curvature ltcrnaxl in the wave trough as a function of the phase speed c 

similar to (3.4). The alternative form (4.3) allows for the possible presence of a vortex 
term a t  large values of IwI, when c+- l .  By (3.3), the circulation in the vortex is 
proportional t o  

The results of this calculation were numerically indistinguishable from those 
obtained with the assumption (3.2), i.e. the two calculations converged to the same 
solution. This was explained by the fact that  with increasing N the series (4.5) 
converged numerically to zero, showing that the strength of the vortex a t  infinity 
was indeed zero. 

Nevertheless the rate of convergence of the coefficients B, and of the corresponding 
Bernoulli constant B was better by a factor of 2 to 10 than the rate of convergence 
of the coefficients 4. This can be seen from the numbers given in table 3. Thus if we 
disregard the far field, the assumption (4.3) yields significantly better results than 
(3.2). 

Concerning the degree of accuracy, we note that the variation AB in the Bernoulli 

G(c0) =4-$+4- ... . (4.5) 
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C N R AB 
0.9276 
0.95 
1 .oo 
1.05 
1.10 
1.15 
1.20 
1.25 
1.30 

50 
50 
45 
45 
45 
40 
40 
40 
20 

1.486 35 
1.451 54 
1.367 51 
1.27445 
1.17168 
1.058 2 
0.9334 
0.7959 
0.645 

.00004 

.00005 

.00006 

.00008 
,00014 
.0008 
,0006 
,0017 
,007 

TABLE 3. Convergence obtained with equation (4.3) 

constant should really be compared with the largest term in B,  that is to say 
$I&,,. From table 3 it  appears that  for the limiting wave (c = 0.9276), the ratio 
2AB/qk,,is less than Thus it can hardly be doubted that a solution exists. Even 
when c = 1.30 the ratio is less than 2 x lop3. However, when c 2 1.10 any increase in 
the number N of coefficients beyond the number stated does not appear to improve 
the accuracy of the solution, a t  least by this method. 

5. Discussion: the lower bound of OL,,, 
We have found strong evidence that waves of solitary type do cxist within a 

certain range of the wave speed c and the slope amplitude a,,,. A question that 
naturally arises is : what is the maximum value of c, and the corresponding value of 
a,, 1 In particular, is i t  possible that a,,, can tend to zero 1 

Now in the parallel case of solitary wavcs in shallow water there do exist waves of 
arbitarily small slope, whosc speed tends to the value (gd);  (d denotes the 
undisturbed depth). But in this limit the characteristic horizontal lengthscale of the 
wave becomes indefinitely large. The same is true also of other known types of 
solitary wave in water: the ‘envelope soliton’ and the internal solitary wave 
(Benjamin 1967). In the present case of capillary-gravity waves, to extend the 
characteristic lengthscale while simultaneously diminishing a,,, would mean 
reducing the local curvature and hence decreasing the relative importance of surface 
tension. This would diminish the opportunity for nonlinear effects to produce a 
solitary wave. 

Hence for C-G waves, the only possibility, at low values of a,,, would be for the 
horizontal scale of the wave to  simultaneously decrease, in some limited part of the 
wave profile. This would imply a relatively narrow region of sharp curvature, 
presumably in the wave trough where most of the increase in 1011 would take place. 
Outside this region the curvature would be even smaller. 

On the contrary, we see from figures 5 and 6 that ~ m a x / ~ ~ m a x ~  shows no sign of 
tending to zero as c increases beyond 1.30. This fact suggests that a t  the upper end 
of the range of c there is actually no concentration of curvature in the wave 
troughs - unlike the situation a t  the lower end of the range. 

We must conclude, a t  least tentatively, that for C-G waves the lower bound for 
a,,, is positive. Hence, the present nonlinear solutions are not analytically 
contiguous to the well-known periodic surface waves of low amplitude. On the other 
hand they almost certainly are contiguous to C-G waves of finite amplitude and 
relatively large wavelength such as have been investigated by previous authors. 
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FIGURE 7 .  Streamlines of the flow as seen in a stationary frame of reference: (a)  c = 0.9276, 
( b )  c = 1.10. 

6. The flow relative to deep water 
Consider now the flow as seen in a stationary frame of reference, in which the 

particle velocity a t  infinite depth is zero. Ifx' denotes the complex velocity potential 
in this frame we have 

(6.1) x' = (#+i$)-c(z+iy) = c(w-z) 

and so 
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by (2.i) ,  ( 2 . 2 ) ,  (2.3) and (3 . i ) .  For large values of lzl where a and /3, hence F ,  are small, 
we have 

N -cF 
dz 

Assuming that as w --f co G(w) + D/c  

say, we have 

From (6.3) and (6.5), 

F -  D l c  ,g 
(w-ia)2 cz2'  

d X I N _ _  D 
dz 2 2  

Thus the far-field flow is approximately a dipole. 
The streamlines in the relative flow are shown in figure 7, at  various values of c. 

It can be seen how the velocity field resembles that due to a body near the free 
surface moving horizontally with speed c to the left. In  this case, however, the net 
displacement of mass is zero. The impulse I, given by (8.11) comes entirely from the 
'virtual mass' associated with the wave, as we shall now see. 

7. Integral properties : the net displacement 
In  this and the following Section we shall consider some integral quantities of the 

motion relative to fixed axes. If y = 7 denotes the elevation of the surface above the 
undisturbed level at infinity we may define the net displacement, or excess mass 

cc 

M = S_,ndz. 
By analogy with shallow-water waves (Longuet-Higgins 1974) we may also define 
the ' circulation ' 

C = S_mm (u-c)  dx = [$'I-", (7.2) 

where 4' = $ - cx. 
We shall now prove a general theorem relating the excess mass M to the circulation 

C, namely 
M = -cC. (7.3) 

For, in the steady flow relative to axes moving with speed c to the left consider the 
flux of vertical momentum into the region bounded by the free surface y = 7, the 
horizontal plane y = - Y and the two vertical planes x fX (see figure 1) .  This flux is 
given by 

(7.4) 
x - x  rx [ ( P + v 2 ) , = - Y  -P,-?Idx- ly uv dylx--x. 

In  a steady state this must be exactly balanced by the rate of increased vertical 
momentum due to  the downwards action of gravity, namely 
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Now from Bernoulli’s equation for the interior of the fluid we have 

p,=-, -p,=,  = [i(u2+v2) + y];I$. 
So on equating (7.4) and (7.5) we obtain 

But the boundary condition a t  the free surface can be written 

where 

So on integration with respect to x we have 

X 

{[a(.’ + v * ) ~ , ~ -  c2] + q}  dx = [sin (7.10) 

As X + co, so a -f 0 by hypothesis, and the right-hand side vanishes. In  other words 
the surface tension contributes on the whole zero to the vertical momentum of the 
fluid. So from (7.9) and (7.12) we have 

I, 

X X X I-, q dy -f J-x i[c2 - (u2 + v2)]y,--y dz - 51, uv dy 1 . 
-X 

(7.11) 

If we write u’ = u-c for the horizontal velocity in the stationary frame of reference, 
then when X and Y are both large we find to lowest order 

X X 

S_ycvdylx . (7.12) 
S_,BdY+j-x (-cu’),=-,dx- -X 

On replacing u‘,v by $: and $; respectively the right-hand side becomes 

a$’( -x, 7) - $’@, 7)1. (7.13) 

By (7.2),  this tends to the value -cC. So (7.3) is proved. 
Physically this means that in order to maintain a non-zero net displacement a t  the 

free surface, some circulation a t  great depths is required. The situation is analogous 
to the lift on an aerofoil produced by a net circulation around the wing, except that 
in the present case the flow in only about half the space is involved. 

However, we have seen that the vortex component of the flow vanishes, so no 
circulation 6‘ can be provided. Thus in (7.3) C is 0 and we have 

M = 0. (7.14) 

In other words the net displacement of fluid at the surface is zero. 

8. The energy and momentum 
We may define the gravitational potential energy and the surface tension energy 

(8.1) 
by 
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and V, = (ds-dx) = [s-x]_moO 

respectively. Also the kinetic energy in the relative motion is given by 

T = l:rnJlrnt(q5L2+q5:)dxdy. 

Using Green’s theorem we may transform (8.3) into the form 
,. 

T = $  #dy, J 

(8.3) 

the integral being taken along the surface from x = - GO to GO. Since $’ and y both 
vanish a t  x = f 00 we may integrate by parts to obtain 

since dq5’ = dq5 - c dx, and J’ y dx vanishes by (7.14). 
It can also be shown (see the Appendix) that 

2T = XCD + c2M, (8.6) 

where D is the strength of the dipole, defined in (6.7). Since M = 0 this becomes 
simply 

2T = KCD. 

We note that as w + c c  so 5--1, by (3.3). So from (3.4), (6.4) and (6.5) we have 

D =A1-A+%- ... . (8.8) 

Thus (8.4), (8.5) and (8.7) represent three different ways of evaluating T.  
We may also define the total horizontal momentum or impulse 

I =  lim (x (-u’)dzdy. 
X,Y+Oo -x -Y 

However, for large values of X and Y we find 

I = 20 tan-l ( X / Y )  + cM (8.10) 

(see the Appendix). Since M = 0 equation (8.10) becomes simply 

I = 20 tan-’ (X/ Y) . (8.11) 

For example, if we make X and Y tend to infinity in such a way that X / Y  + GO 

then 
I = KD. (8.12) 

From (8.7) we have then 2T = d, (8.13) 

as for periodic waves (c.f. Hogan 1979). If on the other hand X / Y  + 0, i.e. we consider 
a large section of fluid that is deep compared to its width, then we find 

I = 0. (8.14) 

This means that the positive momentum at higher levels is exactly compensated by 
the negative momentum a t  deeper levels. This indeterminacy in the momentum, or 
added mass, is typical of dipole flows. 
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I 

C 

0.9276 
0.95 
1 .oo 
1.05 
1.10 
1.15 
1.20 
1.25 
1.30 

I 

VT 

1.806 
1.713 
1.505 
1.297 
1.091 
0.889 
0.695 
0.512 
0.34 

TABLE 4. 

VG V T 

0.260 3.066 1.294 
.291 2.974 1.294 
.348 2.765 1.275 
.384 1.681 1.225 
.398 1.489 1.143 
.391 1.280 1.031 
.361 1.056 0.890 
.309 0.821 0.727 
.24 0.58 0.53 

Integral properties of solitary waves 

E 
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C 

FIGURE 8. The gravitational potential energy V, and the surface tension energy V, as functions 
of the dimensionless phase speed c. 
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FIGURE 9. The combined potential energy V ,  the kinetic energy T and the total energy E as 
functions of the phase speed c. 

The computed values of V,, V ,  and T are shown in table 4; also the combined 
potential energy V = V,+ V, and the total energy E = T+ V .  The two potential 
energies are compared in figure 8. It will be seen that V, always exceeds V,, so that 
the waves are essentially surface-tension waves, or ripples. Also V, has a maximum 
in the range of c, 119 was found by Hogan (1980) for periodic C-G waves in deep 
water. 

The combined potential energy V and the kinetic energy T are compared in figure 
9. Both vary monotonically with c, but the potential energy always exceeds the 
kinetic. At the highest values of c, corresponding to the lowest values of the surface 
slope amax, they become nearly equal. 
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9. Conclusions 
We have found strong numerical evidence for the existence of solitary C-G waves 

on deep water, with phase-speeds c in the range 0.9267 (gT); < c < 1.30 (gT)f. This 
compares with the minimum speed c,, of small-amplitude C 4  waves given by 
c0 = 1.414 (gT);. 

The solitary waves are not contiguous to  the small-amplitude waves; a finite 
amplitude is necessary for their existence. However periodic C 4  waves, with finite 
length, have the property that their phase speed decreases, in general, as their 
steepness is increased. Hence the solitary waves that we have found are very 
probably contiguous to a class of periodic C 4  waves of finite steepness, when the 
wavenumber tends to 0. This might already be expected or inferred from previously 
published numerical calculations of C 4  waves. 

It may be noted that the solitary wave profiles that  we have found are 
qualitatively similar to the depression solitary C-G waves in shallow water calculated 
by Hunter &, Vanden-Broeck (1983). It is possible that our solutions are analytically 
contiguous to these, as the depth becomes infinite. 

We shall leave the complete mapping of C-G waves, as a function of both 
wavenumber and maximum surface slope, to  another paper. Nevertheless we can 
here anticipate that the solitary C-G waves that we have found will be a useful 
landmark in any such survey. 

This work was done a t  the La Jolla Institute, and was made possible by The 
Institute’s Research and Development Fund. It was also supported by the Office of 
Naval Research under Contract N00014-88-C-0237. The first results were reported at 
a seminar given a t  the Jet  Propulsion Laboratory, Pasadena, in December 1987. 

Appendix. Proof of equations (8.6) and (8.10) 
Let u and v denote the horizontal and vertical components of velocity in the 

moving frame of reference, in which the flow appears steady, and let u’ = u - c be the 
horizontal velocity in the stationary reference frame. Then we consider the kinetic 
energy contained in a large area bounded by the two vertical planes x = +X, the 
horizontal plane y = - Y ,  and the free surface y = 7. By definition 

2T = jJ(urz+v2)dxdy 

= JI[(u - c ) ~  + v2] dz  dy 

= JJ(uZ + vZ) d~ dy - 2c 

In the first integral in (A 1)  we have 

where # and $ are the velocity potential and stream function in the steady motion. 
Now at large distances we have 

(A 3) 
D 

#+i$ = cz+- 
z 



so 
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(A 4) 

Hence d # d ~  = 2cXcY+2 d ( c y ) - r  x2 + Y2 d(cx). (A 5 )  

In the first integral we may make the substitution y = Xtan8, and in the second 
x = Y tan 8. Hence we find 

[[d#Id$ = 2c2XY+cD[n:-4tan-' (X/Y)]. 

Now in the second integral in (A 1 )  we have 

Hence udydx = 2cXY-2Dtan-'(X/Y). LxL 
Lastly, for the third integral in (A 1) we have 

dxdy = 2XY+M. ss 
Therefore altogether (A 1 )  gives 

2T = XCD + c2M (A 10) 
as stated. 

specified area is given by 
We note that the total momentum - I  of the relative motion contained within the 

- I =  p -x -Y u'dxdy = ~ x ~ y ( u - c ) d x d y  (A 11) 

(A 12) so that from (A 8) I = 20 tan-' (X/Y)+cM 

as was to be proved. 
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